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Abstract—In this paper, three analytical models and one 
approximating model depicting the detailed mechanics of induced 
strain actuators which is surface bonded to the one-dimensional 
structures are obtained. The models demonstrate the extension 
,bending, and local shear deformations induced. The objective is to 
find the slope and deformation for three analytical model and one 
approximating models and compared for the induced strain actuation 
of the pure epoxy beam. 
Nomenclature  

symbol Definition 
		 Blocked force  

 Piezoelectric constant 

 Modulus elasticity of actuator 

 Width of actuator 

 Electric field 

 Width of beam 

 Actuation force 
  Extensional stiffness of the beam 
  Extensional stiffness of two actuator 

  Surface strain of the beam 
  Blocked moment 

  Actuation moment 
  Bending stiffness of the beam 
  Bending stiffness of the two actuator 
  Surface strain at the top of the beam 
  Surface strain at the bottom of the beam 

˄  Free strain 
  Stiffness parameter for the extension 
  Stiffness parameter for the bending 

Г  Shear lag parameter 
  curvature 
∈  Axial strain 

  Coupling stiffness 
  Thickness ratio 
  Stiffness marix 

∧   Forcing vector 

1. INTRODUCTION 

To controlling the structural deformations, there is one 
approach is to access the one-dimensional structure elements 
in which actuation strain can be controlled. Actuation strain is 
defined as the strain is produced by applying electric potential. 
In this paper, actuation strain is produced by piezoelectric 
materials. The Free strain  is obtained by modelling the 
structures which is bonded with the piezoelectric materials. 
Crawley et al. 1988 studied for induced strain actuators which 
is used as highly distributed actuators in intelligent structures. 
With such distributed actuators, it is possible to design 
structures with inherent vibration and shape control 
capabilities. 

The aim of this paper is to acquire accurate detailed models of 
the collaboration between the induced strain actuators and 
one-dimensional structures to which they are bonded. The 
analytical models are derived in terms of free strain to make 
these model applicable. 

Piezoelectricity is the mechanis that isused for induced strain 
actuation in which strain creates by applying the electric field. 
In this paper, PZT-5H has beenused as piezoelectric actuators 
in applications with the beam (Fansom and Caughey, 1987). It 
is essential to describe the piezoelectric actuation strain to 
predict structural deformation by inducing strain with the help 
of the piezoelectric actuator. 

2. INDUCED STRAIN ACTUATION OF BEAM 

The objective of this paper is to acquire accurate detailed 
models of the collaboration between the induced strain 
actuators and one-dimensional structure to which they are 
bonded. When piezoelectric actuators are coupled to the 
structure, the actuators and structure mar extend, bend and 
shear. The comparative importance of these three modes of 
deformations depend on the geometry and the relative 
stiffnesses of the actuators, structure and bonding layers. Four 
models are derived to examine the detailed deformations –
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three analytical models and one approximating model. These 
models are compared to determine what situations higher 
complexity is needed. 

The first model-strain model applicable only to surface 
bonded actuators and it assumes only uniform extensional 
strain in the actuator. The second model- Euler Bernoulli 
model is applicable for either surface bonded or 
embedded,which includes extension and bending in the 
actuator. 

Initially it was unclear that for a surface bonded actuator to the 
beam,linear strain distribution of the Bernoulli-Euler model 
was suitable. Moderately to resolve this uncertainty the 
approximation model-Galerkin method  includes extension 
and bending in the actuator and host structure was developed. 

a). Simple Blocked Force model 

This blocked force model is an approach to estimate beam 
response due to induced strain actuation. It is a highly 
approximate model. The actuator is idealized as a line force 
and this model does not include any spanwise variation of 
stress or strain at the actuator location. To achieve the pure 
extension in the beam the same voltage is applied to the top 
and bottom actuators.  

 
Figure 1: Simple blocked force  model (Pure extension) 

The actuation force in the beam is  2F. The maximum force or 
blocked force in the direction ‘1’ is: 

31 													 1 	

																														 2 	

 
Figure 2: Represent of the direction of Beam and PZT 

							 																																								 3 	

The strain distribution across the beam thickness is uniform. 

                                                    (4) 

For the case of pure bending, an equal but opposite voltage is 
applied to the top and bottom actuators. The strain is varying 
linearly across the thickness of the beam. It is assumed as 
there is no variation of bending stress along the length of the 
actuator. 

 

Figure 3: Simple blocked force model  (Pure Bending) 
 
The actuation moment  can be calculated as: 

             (5) 

 

And for this case, the beam axial strain varies linearly across 
the beam thickness as shown in Figure. The surface strain for 
the top of the beam is: 
 

˄                                 (6) 

 
And for the bottom of the beam, the surface strain is: 
 

˄ 																																																		 7   

b). Uniform Strain model 

In this model, the bond layer between the piezo actuator and 
the structure has a finite stiffness. Strain generated by the 
piezo is dissipated in the deformation of the bond layer itself. 
For the perfectly-bonded actuator, the shear is concentrated 
near the edge of the actuator. For the case of pure extension 
induced by a pair of actuators , the induced strain is: 

2˄
2

																																																									 8  

Where   
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Figure 4: Uniform strain Extension 

For the case of pure induced bending by a pair of actuators, 
the strain at the upper surface of the beam is: 

∈
6˄

6
																																																							 9  

Where  
12

2  

 

Figure 5: Uniform strain Bending 

The shear lag parameter is a measure of the effective stiffness 
of the bond. 

Г )                                           (10) 

c). Euler-Bernoulli model 

This model gives more accurate results than uniform strain 
model, especially for thin bond layers. There is a linear 
distribution of strain in the cross-section for both the actuator 
and host structure and there is no variation of transverse 
displacement ( ) across the thickness. E-B model considers 
the actuators as an integral part of the structure. The axial 
strain varies linearly through the thickness according to 

∈ ∈ 																																																																												 11  

From the piezoelectric constitutive relations, the stress in 

the layer of the beam is  given by: 

∈ ∧ 																																											 12  

																																													 13  

																																								 14  

																																								 15  

∈ ∧																										 16  

∈ ∧																								 17  

For pure extension case, the axial strain of the beam is: 

∈ ∧																																																													 18  

 
Figure 6: Bernoulli-Euler Extension 

For pure bending case, the axial strain distribution is: 

∈ ∧
6 1 ∧

6
											 19  

Where  

 

Figure 7: Bernoulli-Euler Bending 

d). Approximate Solution-Galerkin Method 

For the Galerkin solution, the response is assumed to be a 
summation of functions and it must separately satisfy all 
boundary conditions i.e; geometric and forced –boundary 
conditions. 

Strains and curvatures expressing in terms of displacements, 

							0

				0								
																																														 20  
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Figure 11: A
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4. CONCLUSIONS 

In this study, four separate models of induced actuation strain 
for one-dimensional structure have been developed. 
Piezoelectric actuators were symmetrically surface bonded on 
an epoxy beam to obtain the flexural deflection and slope by 
applying the electric field. From the results, it was concluded 
the following observations which are following as: 

 For pure extension, induced strain predicted by the simply 
blocked force and Bernoulli model are identical. 

 For pure bending, induced strain predicted by the simply 
blocked force and uniform strain model are identical. 

 Uniform strain theory predicted lower deflections among 
the other theory. 

 Simple blocked force theory predicted lower slope among 
the other theory. 

 Based on comparison with the Galerkin and the analytical 
models, Euler- Bernoulli model was estimated to 
accurately predict the deformation. 
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